Send Message
Home > Resources > Company Case About Integrated Circuit- The Miniaturizing aid for Electronics

Integrated Circuit- The Miniaturizing aid for Electronics

 Company Resources About Integrated Circuit- The Miniaturizing aid for Electronics

Every electronic device that we use in our daily life is designed with electrical and electronics projects circuits. These electrical and electronics circuits can be designed using various technologies such as vacuum tubes technology, transistor technology, integrated circuit or IC technology, microprocessor technology and microcontroller technology. An Integrated Circuit is a miniaturized electronic circuit constructed of individual semiconductor devices, as well as passive components, bonded to a substrate or circuit board. An Integrated circuit is made of devices manufactured by diffusion of trace elements into a single piece of semiconductor substrate.



The imperative part of IC

The impact of integrated circuits on daily lives has been colossal. ICs have become the principal components of almost all electronic devices. ICs demonstrate features like low cost, high reliability, low power requirements, and high processing speeds compared to the vacuum tubes and transistors which preceded them.

Modern ICs found its way in military applications, state of the art communication systems, and industrial applications due to its high reliability and compact size. Nowadays, an IC that has the size of a fingernail consists of more than a million transistors and other discrete components embedded into it. Thus an integrated circuit can also be called a microchip and is basically a collection of some discrete circuits on a small chip that is made of a semiconductor material like silicon.

Integrated circuit microcomputers in today’s life are used as controllers in equipment such as machine tools, vehicle operating systems, and other applications where hydraulic, pneumatic, or mechanical controls were previously used. They can also be reprogrammed without having to redesign the control circuitry. Integrated circuit microcomputers are so inexpensive they are even found in children’s electronic toys.

The use of discrete circuits was replaced by IC’s due to two factors. One is space consumption. A discrete circuitry consists of transistors, resistors, diodes, capacitors, and many other discrete devices. Each of them is soldered on to printed circuit boards (PCB) according to the need of circuitry. In the end PCB will occupy a large space. Another drawback is that the soldered components will show less reliability due to the use of many components. Both these factors urged engineers to invent microcircuits that have more reliability and consume less space.

IC technology precisely reduced the size of circuits compared to the circuit size built using discrete components. Thus, cost of the circuits with the IC technology is less than the discrete or transistor technology. IC are at the heart of the rapid developments in mobile telecommunications, multimedia, the internet and numerous other applications. IC design is of major industrial importance, and this is even more true of analogue circuit design, an area in which the European electronics industry is leading the way.

ICs are also designed to serve important industries such as aerospace, automotive, telecom, computers, and so on. One or more ICs, along with other components and connectors, are mounted on the printed circuit board (PCBs) and connected with thin strips of copper to cater an application. A very common use of a PCB is as the mother board of a computer. The entire process of designing, manufacturing, and testing an IC is quite complex. IC designers design and validate the ICs, while the IC manufacturers (often called the foundry) fabricate and test the ICs. This article explains the end-to-end process of IC designing, manufacturing, and testing.